Acropetal disappearance of PsAD1 protein in pea axillary buds after the release of apical dominance.

نویسندگان

  • Y Madoka
  • H Mori
چکیده

We recently isolated PsAD1 cDNA from pea (Pisum sativum L. cv. Alaska) seedlings, whose mRNA abundantly accumulated in dormant axillary buds and disappeared after decapitation [Madoka and Mori (2000) Plant Cell Physiol. 41: 274]. To further elucidate the function of PsAD1, we investigated the temporal and spatial distribution patterns of PsAD1 protein using Western blot and immunocytochemical analyses. Western blot analyses showed that accumulation patterns of PsAD1 protein in axillary buds after decapitation and in response to IAA and 6-benzyladenine were the same as those of PsAD1 mRNA. Immunocytochemical analyses showed that (1) PsAD1 proteins were localized in the procambia, leaf primordia, apical meristem, and secondary axillary buds in the dormant axillary bud, and this distribution was the same as that of PsAD1 mRNA, (2) PsAD1 proteins acropetally disappeared after decapitation, and (3) the growth of axillary buds occurred in the same manner. These acropetal changes occur in a manner similar to the way in which the procambium differentiates into vascular tissue. These results suggest that PsAD1 plays some role in the inhibition of growth and differentiation, or in the maintenance of the dormant state in axillary buds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two novel transcripts expressed in pea dormant axillary buds.

To elucidate the molecular mechanism of apical dominance, the expression patterns of genes that are preferentially expressed in dormant axillary buds of pea (Pisum sativum L. cv. Alaska) seedlings were investigated. We isolated two cDNA clones, cPsAD1 and cPsAD2 whose corresponding genes were named PsAD1 and PsAD2, from a cDNA library of dormant axillary buds using the differential display meth...

متن کامل

Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds.

One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in...

متن کامل

Auxin flow-mediated competition between axillary buds to restore apical dominance

Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormanc...

متن کامل

Sugar demand, not auxin, is the initial regulator of apical dominance.

For almost a century the plant hormone auxin has been central to theories on apical dominance, whereby the growing shoot tip suppresses the growth of the axillary buds below. According to the classic model, the auxin indole-3-acetic acid is produced in the shoot tip and transported down the stem, where it inhibits bud growth. We report here that the initiation of bud growth after shoot tip loss...

متن کامل

The gravity-regulated growth of axillary buds is mediated by a mechanism different from decapitation-induced release.

When the upper part of the main shoot of the Japanese morning glory (Pharbitis nil or Ipomoea nil) is bent down, the axillary bud situated on the uppermost node of the bending region is released from apical dominance and elongates. Here, we demonstrate that this release of axillary buds from apical dominance is gravity regulated. We utilized two agravitropic mutants of morning glory defective i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2000